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Abstract--Natural convection heat transfer from single and double rows of closely spaced isothermal heated 
cylinders was investigated numerically for both laminar and turbulent cases. A sufficiently large number of 
cylinders are considered in each row such that a symmetry unit can be considered for the analysis. ][he 
numerical scheme involves the use of a cylindrical network of nodes in the vicinity of the cylinder with a 
Cartesian mesh covering the remainder of the flow domain. The k-c turbulence model has been applied to 
obtain the results for the turbulent flow predictions. Effects of varying the cylinder spacings in the horizontal 
direction are also considered. The results are of direct use in electrical packaging, solar heating and storing 

technology, nuclear reactor safety and waste disposal, among others. 

NOMENCLATURE "* 1.1,, 

C,~, C~, C2, C3, empirical turbulence model 
constants;  x, 

cp, specific heat at constant  pressure;  
D, cylinder diameter ;  x*, 
g, gravitational acceleration ; Y, 
Gr, Grashof  number, p29flD3 (Tw - T ~)/lt 2 ; 
k. turbulent kinetic energy, Y*, 

(1/2) 0:, 2 + t"0' + t ,'=) or z, 

(1/2) (t,~ + t,;. ~ + t:); 
k*, dimensionless turbulent kinetic energy, 

D2k/vZ ; I~, 
I. characteristic length scale of turbulence ; r., 
Pr, Prandtl  number,  It%/2; ~*, 
r, radial  coordinate ;  
r*, dimensionless radial  coordinate,  r/D; O, 
Ra, Rayleigh number,  Gr Pr; 3, 
SL, horizontal center-to-center distance for an 

array of cylinders;  P' 
St, vertical center-to-center distance for an P" 

array of cylinders;  11,*, 
P, T, local temperature ; 

T,,, cylinder surface temperature;  v, r 
T ~, ambient  temperature ; ~,., 
T*, dimensionless temperature,  

( T -  T . ) / ( T , . -  T~.); 09, 

t;, radial  velocity component ;  
r,*, dimensionless radial  velocity component ,  

pDr,/It ; 
t,0, circumferential velocity component  ; 
v~, dimensionless circumferential velocity 

component,  pDvt/lt ; 
v~,, velocity component  in the x direction ; 
t~,,'* dimensionless velocity component  in the x 

direction, pDvx/It ; 
r ,  velocity component  in the y direction;  

dimensionless velocity component  in the y 
direction, pDt'r/p ; 
Cartesian coordinate  denoting horizontal  
distance;  
dimensionless x coordinate,  x /D;  
Cartesian coordinate  denoting vertical 
distance;  
dimensionless y coordinate,  y/D; 
axial coordinate.  

Greek symbols 
thermal coefficient of volume expansion ; 
volumetric dissipation rate of turbulent 
kinetic energy;  
dimensionless volumetric dissipation rate 
of turbulent kinetic energy, D~r/v 3 ; 
circumferential (angle) coordinate  ; 
thermal conductivity ; 
molecular viscosity ; 
turbulent viscosity; 
dimensionless turbulent viscosity, It,lit ; 
density;  
kinematic viscosity; 
stream function ; 
dimensionless stream function, tp/tl; 
vorticity component  parallel  to cylinder 
axis; 
dimensionless vorticity, DZto/v. 

INTRODUCTION 

TttE STUrdY of forced convection heat transfer in 
interacting flow fields (e.g. flows normal  to a bank  of 
tubes) received considerable at tention in the past 
because of the importance of the flow configuration in 
the design of heat exchangers [1-5] .  Investigations in 
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the area of heat transfer by natural convection from 
tube banks or arrays of cylinders, where separate flow 
fields induced by individual surfaces interact, have 
been. up to now, relatively few. The mathematical 
complexities are much more involved than the forced 
com'ection case. The interest in obtaining quantitative 
information about natural convection heat transfer in 
interacting flow fields has increased considerably in 
the last decade. This has been mainly due to advances 
in electrical packaging, solar heating technology, 
nuclear reactor safety and the handling of nuclear 
wastes. The demands for energy conservation have also 
increased the importance for a better understanding of 
natural convection in interacting flow-fields. 

Eckert and Soehngen [61 used a Zehnder-Mach 
interferometer to study natural convection from a 
cluster of heated horizontal cylinders placed in an 
infinite medium. It was observed that the effect of the 
warmer wake around the upper cylinders reduced the 
heat transferred since the temperature differential had 
decreased. For a staggered arrangement of the cylin- 
ders, an induced fluid movement of cooler air resulted 
in a greater heat transfer. Leiberman and Gebhart [7] 
experimentally investigated the interaction between 
the natural convective flows of several closely spaced 
surfaces by using long, horizontal wires in a parallel 
array at several spacings and inclinations. The in- 
fluence of tube spacing and array on natural con- 
vection heat transfer for horizontal tube bundles has 
been determined experimentally by Tillman [8]. Till- 
man concluded that tube spacing has more effect on 
the heat transfer than the type of array. Natural 
convection from vertical tube bundles to an infinite 
atmosphere has been studied experimentally by Davis 
and Perona [-91. 

Recently, Warrington and Crupper [10] have exper- 
imentally investigated natural convection heat trans- 
fer from a fixed array of four isothermal cylinders in a 
cubical enclosure. The cylinders were placed both 
vertically and horizontally and it was observed that the 
vertical configuration led to decreased heat transfer. 

The purpose of this study is to obtain solutions to 
the complete Navier-Stokes and energy equations for 
steady state 2-dim. laminar and turbulent natural 
convection in interacting flow-fields. This refers to a 
flow field where the buoyancy-driven flow is caused by 
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more than one heated body. Specifically, rows of 
isothermal horizontal cylinders are considered sub- 
merged in an infinite Boussinesq fhfid. Previous 
numerical studies of forced convection in tube banks 
[4, 5] considered fully developed flows where a "repre- 
sentative element" of the cross-section is considered 
remote from the influence of the boundaries. The 
governing equations are solved for this element by 
considering repetitive boundary conditions at the inlet 
and outlet regions. Unfortunately, such an approach is 
not applicable to natural conrection in a tube bank 
because of the strong coupling between the momen- 
tum and energy equations and the unknown mass flow 
rate through the tube bank. Whereas for forced 
convection analysis the mass flow rate is independent 
of number of tubes in the bank and their spacings, it is 
not the case for natural convection. 

SINGLE AND DOUBLE ROWS OF CYLINDI-2RS 

TO study the interactions between the natural 
convective flows of closely spaced bodies, single and 
double rows of circular cylinders placed equally apart 
are considered. A finite difference numerical scheme 
[111 , which has recently been applied to natural 
convection problems [12-141 , is adopted for generat- 
ing the 2-dim. steady state results. A symmetry unit is 
considered for both the single and double rows of 
cylinders as shown in Figs. 1-3. The ratio (St~D) of the 
center-to-center distance between the cylinders in the 
horizontal direction to the cylinder diameter was 
varied from 6 to 2 for the case of a single row of 
cylinders. For double rows of cylinders the spacings 
between the cylinders in the vertical (Sr) and horizon- 
tal directions (SL) were kept equal to 4 for the results 
presented. 

A two equation (k-e) turbulence model was used to 
predict the natural convective flow in the interactive 
flow-field for Rayleigh numbers above 107. The flow 
around a single heated cylinder tends to become 
turbulent when the Rayleigh number exceeds the 
above value [161. The k -e model proposed by Launder 
and Spalding [151, characterizes turbulence by trans- 
port equations .for time averaged k, the turbulent 
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FIG. 1. Single row of cylinders with the unit of symmetry FIG. 2. Double rows of in-line cylinders with the unit of 
indicated, symmetry indicated. 
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kinetic energy and t:, ils rate of dissipation. Buoyancy 
effects on the turbulence structure are also accounted 
for. The equations for the time averaged continuity, 
momentum and energy are solved simultaneously with 
the differential equations for k and r, for the turbulent 
flow predictions. In order to limit the size of the flow 
domain, an SL/D ratio of 2 is used only for generating 
resulls  in the turbulent regime. Turbulent flow pre- 
dictions were obtained for the "single row" case only. 

Air properties at atmospheric pressure were used in 
the following calculations with Pr =: 0.721. The 
applicability of the method used is, however, not 
limited to the above geometrical configurations and 
the Prandtl number studied. 

Tile FINITE DIFFERENCE GRID SYSTEM 

For the finite difference solution of elliptic equa- 
tions, the flow boundaries should be grid lines them- 
sel','es, otherwise either an uneven boundary will result 
or special finite difference formulae will be needed at 
the boundary. This constraint is more important at a 
solid boundary since an)' mismatch here between the 
grid and the boundary could lead to an erroneous flow 
pattern. Considering the symmetry units depicted in 
Figs. 1-3, it is seen that the main deterrent is the 
circular boundary of the cylinders as opposed to the 
rectangular boundary of the flow domain. 

A composite form of polar and Cartesian system of 
grids, recently suggested by Launder and Massey [5], 
has been employed in this study. Close to the cylinder, 
the steepest gradients of flow properties are in the 
radial directions. Thus, a cylindrical polar grid in the 
neighbourhood of the cylinder was retained. The r 
coordinate is measured from the center of the cylinders 
and 0 is measured anti-clockwise from the downward 
vertical line as shown in Fig. 1. The remaining flow 
region is filled with a Cartesian mesh. For the'double 
rows case, two polar grid systems are used in the 
vicinity of two cylinders within the symmetry unit. The 
cylindrical and Cartesian grids are entirely inde- 
pendent of one another. However, the grids overlap 
each other and no matching of nodes between neigh- 
boring grid regions was attempted~ A l{ne ot ~ "t~alse "' 
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FIG. 3. Double rows of staggered cylinders with the unit of 
symmetry indicated. 

nodes was defined, for each grid, beyond the in- 
tersection line to provide a connection between the 
cylindrical and polar regions. Additional details of the 
matching region can be found elsewhere [5, 17]. This 
system of the composite grid was chosen for the 
present problem as it is found to be flexible and 
capable of modelling any pitch-to-diameter ratio for 
the rows of cylinders considered. 

.MAII I E.M ATICA L FORMULATION 

Using the stream function-vorticity approach, the 
steady state 2-dim. laminar natural convection in the 
interacting flow-field considered is given by the coup- 
led elliptic transport equations for ~*, c9", and T*. 

Various authors have proposed closure models for 
turbulent flows in an attempt to accurately predict the 
turbulent shear stress. Due to its demonstrated success 
in calculating a wide variety of forced flows, the k-r, 
model of Launder and Spalding [15-1 was chosen for 
calculating the turbulent natural convection in the 
interacting flow-fields. The turbulent viscosity is pro- 
portional to a characteristic velocity of turbulence (e.g. 
the square root of the turbulent kinetic energy) and a 
length scale representing the energy-containing eddies. 
In the k-r. model under consideration the length scale 
is taken to be the dissipation length scale (r, ~ k~2/I). 
Thus, the turbulent viscosity can be written as 

It, = C.  t) k'-'/~: (1) 

where C~, is an empirical constant. In the turbulence 
model employed, time averaged values of the tempera- 
ture T*, stream function ~-* and vorticity e3* are used. 
The mean motion is considered to be 2-dim., but 
fluctuating components of velocities in all three dimen- 
sions are taken into account. The partial differential 
equations for steady (time averaged) turbulent natural 
convection flow can be written in cylindrical polar 
coordinate form using the Boussinesq approximation 
as follows: 

8 (r, L(I _ 
?r* ?r* ] ?O \r* 80 I r* cfi*, (2) 

(, ~-r ~ ~*c0*/ ?0\ 8r*J 

/ a t *  8T*gr, r* sin 0 )  =; Gr ~---~ cos 0 + _ (3) 

8 ( _ 
- - -  T *  

:.-~-) ao,, a:/ 

dr* + a t /  at* J 

+ = 0, (4) co o ~ j , : ; ~ J  
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or k* \r  cU 
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and the stream function and the vorticity are defined as 

1 aft* af  
tr* r* g0 ' 6' dr*' (Ta, 7b) 

l [~: �9 a~: l o~* = - -  (r e ~ ) -  (8) 
r* aO J" 

The above equations are used in the vicinity of the 
cylinder. This set of equations in the Cartesian coor- 
dinates become 

a (of. I •  
ax* tax* / + ay* kay* ] -m*, (9) 

a [ a f * \  a [ a f * \  
- -  a ~ * - -  - - - -  o 3 * - -  

a..,c* ~ Oy*) ay* t 0.~*) 

a {tT"[(l + lq*)cb*] } 
?x* ax* 

~ FI;(i t . :),~,]~ aT, 
= G r - - -  (10) 
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where the stream function and the vorticity are defined 
a s  

af* 
f* =Of*--- 6* = - - -  (14a, 14b) 

ay* ' ax* 

and 

~* = &~. a~* (15) 
ax* ay*" 

For forced convection flows, turbulence energy is 
created by the action of the turbulent contribution to 
the shear stresses on the moving fluid. In natural 
com'ection flows, however, a buoyancy induced source 
of turbulent kinetic energy is also present. The ex- 
pressions (5b) and (12b) represent the energy pro- 
duction and/or dissipation terms for the k* equation in 
polar and Cartesian coordinates, respectively. 

This model contains empirical constants in the 
preceding expressions. Or, at, and a,  are the turbulent 
Prandtl numbers for T*, k*, and r.* respectively. 
Numerical values for C,, Ct, C2, Or, Ok, and a~ are 
taken as recommended by Spalding and Launder [15]. 
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The constant C 3 does not exist in forced flows, but its 
value can be chosen to be equal to C t implying similar 
contribution from buoyant and gradient production 
on the scales and intensity of the turbulence. Previous 
studies [13, 14, 18] have shown that variation ofC 3 has 
slight effect on the heat transfer predictions. The 
numerical values for the empirical constants used in 
this study are given in Table 1. 

It should be noted that both the molecular viscosity 
and the laminar Prandtl number have been taken into 
account in the turbulent form of the eqnations. Thus, 
the equations are valid throughout the laminar, semi- 
laminar and turbulent regions of the flow field [15]. 

For laminar flow predictions, only equations for ~*, 
oJ*, and T* are considered and these are obtained by 
setting 1+* = 0 and dropping the over-bars in equations 
(2)-(4) for cylindrical coordinates and equations 
(9)-(11) for Cartesian coordinates. 

BOUNDARY CONDITIONS 

The coupled set of elliptic equations (three for the 
laminar case and five for the turbulent case) can only 
be solved if the conditions are specified along the entire 
boundary which encloses the flow field. The cylinders 
are considered to be held at a uniform temperature Tw 
(Tw > T~). The necessity to limit the size of the 
solution domain requires that inflow and outflow 
boundaries be defined at finite distances upstream and 
downstream from the cylinders. 

The boundary sections considered in the solution 
domain A - B - C - D  (as shown in Figs. 1-3) are handled 
as follows: 

Symmetry lines 
On the left symmetry line A-D,  the stream function 

is set equal to zero. Vorticity and the gradient of the 
temperature normal to the symmetry lines A-D and 
B-C are both set to zero. For the case of turbulent flow 
predictions, the gradients of k* and e* normal to the 
symmetry lines are also set to zero. 

A major difficulty in the solution of the set of 
equations considered is the mass flow rate which is not 
known a priori, both in terms of magnitude and 
distribution. Along the symmetry line B-C, the value of 
the stream function is uniform, considering no flow 
across it. An iterative scheme was used to evaluate the 
stream function. For every iteration cycle, the stream 
function value along the symmetry line B-C is set equal 
to the average of the stream function values at the 
nodes nearest to the symmetry line at the inflow and 
outflow sections, calculated from the previous iter- 
ation cycle. This way of handling the stream function 
boundary condition provided converged solutions. 
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Inflow and outflow boundaries (A-B  and D-C)  
It is assumed that if the inflow and outflow boun- 

daries are set sufficiently far away from the cylinders, 
then the velocity components in the direction normal 
to the symmetry lines are negligible, implying that in 
the far field all flow must be in the direction parallel to 
the symmetry lines. This is not strictly true for the 
outflow section, unless it is considered at a very large 
distance from the cylinder center. The approach here is 
to somehow neglect the details of flow further down- 
stream and obtain realistic answers upstream [19]. 
The boundary conditions for the inflow and outflow 
sections then become 

~ *  9o~* ~k* ~ *  

ay* d)'* dy* 33'* 
O. (16) 

The temperature of the fluid drawn into the flow field is 
the same as the ambient temperature. However, a 
generalization along the outflow boundary cannot be 
made since the temperature distribution is not known 
a priori. It is assumed that the temperature gradient 
normal to the outflow boundary is zero. 

Cylindrical surfaces 
The value of the stream function is uniform around 

any particular cylinder, corresponding with an im- 
permeable wall. Its value is the same as along the 
adjacent symmetry plane. The thermal boundary 
condition applied in the present calculations is that of 
uniform surface temperature around the perimeter of 
the cylinder. An expression for vorticity at the cylinder 
wall is obtained by expanding the stream function near 
the wall as a Taylor series and then using the 
continuity and the no-slip condition. Thus, the vor- 
ticity at the cylinder wall is given by 

2(~* - ~*) 
cb* = (17) (~r*) 2 

where if* is the stream function value at the confining 
wall and tff* is the value at a short distance At* into the 
fluid. 

For the turbulent flow predictions, the conditions 
for k* and e* have to be considered on all boundaries 
including the cylindrical surfaces. On the cylindrical 
walls, k* is set equal to zero. However, the value of e* is 
difficult to assign on the walls because e ~ k s r2/l with k 
and I being both zero at the wall. This dilemma was 
circumvented by using the wall-function expression for 
~* near the wall [20]. The rate of dissipation of kinetic 
energy near the walls is fixed by the requirement that 

Table 1. Constants used in the turbulence model 

Cv Ct C2 C3 o'~ a, a r 

0.09 1.44 1.92 1.44 1.0 1.3 1.0 
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the length scale varies linearly with the distance from 
the wall. The expression for r.* is 

C 3A ..pk .3,'2 
q -- - -  (18) 

K At* 

where the subscript p represents the nearest grid point 
from the wall, t,- is the yon Karman constant with a 
value of 0.42. 

Intersections between polar and Cartesian grids 
The values of the dependent variables on the "false" 

polar and Cartesian nodes are obtained by interpo- 
lation from the surrounding four Cartesian and polar 
nodes respectively [5]. These values are then used as 
the boundary conditions during the next cycle of 
iteration. The interpolation assumes a linear variation 
of the dependent variables between the grid nodes, 
which is a reasonable approximation when the grid 
intersections are not within the wall boundary layers. 

SOLUTION PROCEDURE 

Both for the polar and Cartesian grids, the equa- 
tions (2)-(6) and (9)-(13) are transformed into differ- 
ence equations by using a finite difference method 
presented by Gosman et al. [11]. Instead of using 
standard Taylor series expansions, the finite difference 
equations are obtained by integration over finite cells. 
The method was developed by its originators for 
arbitrary orthogonal coordinates, a feature which 
makes it particularly attractive in the present case 
where different coordinates are used in different re- 
gions. A successive substitution technique is employed 
to solve the finite difference equations. The finite 
difference procedure adopts an "upwind" difference 
treatment of the convective terms and the difference 
equations are solved by a point iteration method. 

The calculations were performed on a Burroughs 

B7700 digital computer. To obtain converged sol- 
utions, about 300 iterations were needed for the 
laminar cases and about 500 iterations for the turbu- 
lent flow predictions. For higher Rayleigh numbers, 
the solutions of the previous lower Rayleigh number 
case were used as the initial values in the iterative 
process (for the same St/D and Sr/D ratios). 

RF.SuL'rs AND mscuss los  

For a single row of heated cylinders, solutions were 
obtained both for laminar and turbulent cases. The 
Nusselt number in this case becomes a function of 
Rayleigh number as well as the StJD ratio. Predictions 
were obtained for the Rayleigh number (based on 
cylinder diameter) range of 103-10 s while the ratio 
St/D was varied from 6 to 2. For the case ofSl,/D = 2, 
solutions were obtained over an extended Rayleigh 
number range (103-109). The predictions for Ra > 107 
were obtained using the k-e, turbulence model dis- 
cussed earlier. 

The inflow and outflow boundaries were con- 
sidered at a distance 4D from the center of the 
cylinder (for the "single row" case) for the SUD ratio of 
6. This distance was gradually reduced for decreasing 
StJD ratios to reduce computational time. It is noted 
here that extending the inflow and outflow boundaries 
to very large distances would invalidate the symmetry 
boundary conditions used along lines B-C and A-D 
(asshownin Figs. l -3 ) .Apola rg r idof l5  x 31 (r x 0) 
near the cylinder and a Cartesian grid of 25 x 49 (x x 
y) for the remaining area (within the symmetry region 
shown in Fig. 1) were used for the laminar flow 
predictions for the "single row" case. For turbulent 
flow predictions (only for StJD = 2) a polar grid of 31 
x 51 (r x 0) and a Cartesian grid of 25 x 69 (x x y) 

were used. The radial node spacing was reduced by a 
factor of 2 for the nodes close to the cylinder wall as 

qJ =+54.8 tp*=+27.4 I.IJ =0 tp =-27.4 qJ =-54.8 

FIG. 4. Streamlines for a single row of cylinders, Ra = 10 3, SffD = 6, At)* = --3.I9. 
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~_--~T*=.3 
T*=.3 ~ T * = . 2  

T*--.4 T*=.I 

T*=.5 

FIG. 5. Isotherms for a single row of cylinders, Ra = 10 ~, StJD = 6. 

compared to the remaining polar region for both the 
laminar and the turbulent flow cases. The polar grid 
extended up to a distance of 2D from the center for 
S d D  = 6. 

Figure 4 shows the natural convection flow patterns 
for a single row ofcylinders at Ra = 10 3 and St . /D = 6. 

The results ,,,,'ere obtained only for the symmetry 
region A-B-C-D as shown in Fig. l. Figure 4 was 
constructed by joining the solutions of four adjacent 
symmetry units together. An infinite row is considered 
and thus end effects were not accounted for. It is 
observed that as the plume forms at the wake regions of 
the cylinders, a strong flow reversal is encountered due 
to the restricted flow region. The isotherms for this 
flow situation are shown in Fig. 5. lfa finite number of 
cylinders are considered, then much farther down- 
stream the plane of the cylinders, the temperature 
distribution will no longer resemble plumes arising 
from individual sources but from a single source [7]. 

Since a 2-dim., steady-state model is employed, no 
oscillations in the plume (if they are present) can be 
predicted. The heat transfer results may not be signi- 
ficantly affected by this. 

The heat transfer characteristics for a single ross' of 
cylinders at varying S t / D  ratios are presented in Fig. 6. 
The results are shown o'.er the Rayleigh number range 
of I03-I0 s. The results indicate the strong influence of 
the cylinder spacing on the average Nusselt number. 
For low Rayleigh numbers the heat transfer is 
decreased for close spacings of the cylinders. But as the 
Rayleigh number increases the effect diminishes and 
can even result in enhanced heat transfer. The op- 
timum spacing for maximum heat transfer was found 
to be a strong fimction of the Rayleigh number as is 
evident from Fig. 6. In all cases, the mean Nusselt 
number '.,,'ill approach the value for a single cylinder in 
an unbounded Boussinesq fluid [12] when S f f D  is 
increased to a large value. 
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FIG. 6. Mean Nusselt number for a single row of cylinders. 
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FiG. 7(a). I so therms for a single row of  cylinders, Ra = 1 0  6, SJD = 2. (b) Streamlines for a single row of 
cylinders, Ra = 10 ~', SL/D = 2, A~,* = --60.0. 
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X*=.3 ~ T*=.4 
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Fie,. 8(a). I so therms for a single row of  cylinders ( turbulent  flow), Ra = l0 s, StJD = 2. (b). Streamlines for 
single row of  cylinders ( turbulent  flow), Ra = l0 s, SL/D = 2, A~* = --209.6. 
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F,(;. 9(a). Constant  turbulent kinetic energy lines for a single row of cylinders, R a  = l0 s, S t . / D  = 2. 
(b). Constant  turbutent viscosity lines for a single row of cylinders, R a  = l0 s, S t . / D  = 2. 
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Fl(;. 10. Mean Nusselt number  as a function of Rayleigh number  for a single row of cylinders, S t / D  = 2. 
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For the particular case of StJD = 2, results were 
obtained beyond the range shown in Fig. 6. Figures 
7(a) and 7(b) display the isotherms and flow patterns 
for a single row ofcylinders where Ra = 106 and StJD 
= 2. The results are shown only for the symmetry 
region as given in Fig. 1. The thermal boundary layer 
adjacent to the cylinder thins considerably, consistent 
with previous observations for a single cylinder [12, 
21]. The close spacing of the cylinders, however, affects 
the orientation of the flow patterns, tt was obsen'ed in 
the study of the natural convection flow around a 
single cylinder, that at high Rayleigh numbers, the 
majority of the flow comes from the sides instead of the 
bottom [12, 14, 21]. The heat transfer in this case is 
found to be enhanced by the spacing of the cylinders. 
More detailed study is needed to verify this conclusion. 

Turbulent flow predictions were obtained for single 
row of cylinders at the St./D ratio of 2 and for the 
Rayleigh number range of 5 x l0 T to 10 '~. Figures 8(a) 
and 8(b) show the time-averaged isotherms and 
streamlines at Raylcigh number of l0 s for the sym- 
metry region as shown in Fig. 1. The thermal boundary 
is found to be extremely thin which is in agreement 
with the results for turbulent natural flow around a 
single cylinder [14]. The effects of the neighboring 
cylinders are, however, evident from the streamlines. 

The constant turbulent kinetic energy lines and the 
constant turbulent viscosity (l~* = ItJlt) lines are 
shown in Figs. 9(a) and 9(b), respectively. The turbu- 
lent kinetic energy and the turbulent viscosity are 
found to be high along the center of the plume and 
close to the cylinder at the wake region. The heat 
transfer results for a single row of cylinders at StJD --- 2 
are given in Fig. 10 for the Rayleigh number range of 
103-109. The mean Nusselt numbers for a single 
cylinder placed in an infinite medium are also shown in 
the same figure from the correlation given by Kuehn 
and Goldstein [22]. The validity of the present numeri- 
cal approach has been demonstrated by solving the 
well documented 'single horizontal cylinder' case, both 
for the laminar and turbulent flow regimes [12, 14]. 
The mean Nusselt numbers from the above studies are 
also shown in Fig. 10 for the purpose of comparison. It 
is observed that for the single row of cylinders, the heat 
transfer is decreased at low Rayleigh numbers for this 
S t / D  ratio, but the trend is reversed for higher Rayleigh 
numbers. This is probably due to the change in flow 
patterns caused by the spacing of the cylinders. 
Further work in this area is also needed to validate the 
observations. 

Numerical solutions for the temperature and vel- 
ocity fields were obtained for the natural convcction 
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FIG. 1 l(a). Isotherms for double rows of cylinders (in-line), Ra = 103, StJD = Sr/D = 4. (b). Streamlines for 
double rows of cylinders (in-line), Ra = 103, St./D = Sr/D = 4, A~,* = --4.26. 



Natural convection from horizontal cylinders in interacting flow fields 241 

tow around double rows of in-line and staggered 
:ylinders. The symmetry regions as shown in Figs. 2 
md 3 were considered. For  both the in-line and 
;taggered arrangements, polar grids (15 x 31) were 
~sed near the vicinity of the cylinders and the remain- 
ng region was filled with a Cartesian grid (25 x 97) 
:ystem. A limited study was carried out in this case and 
;olutions were obtained only for S t / D  = Sr /D = 4 for 
)oth the in-line and staggered arrangements. Only 
aminar flow situations were considered. The inflow 
md outflow boundaries were considered at a distance 
}f2D from the nearest cylinder. Figures 1 l(a) and 1 l(b) 
;how the isotherms and streamlines for natural con- 
,ection flow in double rows of in-line cylinders at 
~,ayleigh number of 103. Both cylinders are main- 
ained at the same constant temperature. The top 
:ylinder is subjected to the warm wake of the bot tom 
:ylinder. However, due to the close horizontal spacing 
)fthe cylinders, a strong flow reversal is observed. The 
~cat transfer results for the in-line arrangement are 
;hown in Fig. 12. Results were obtained for the 
~ayleigh number range of 103-105. The mean Nusselt 
mmber  for the bot tom cylinders was about the same 
ts found for the case of single row of cylinders, for the 
:ame S, . /D ratio. The mean Nusselt number for the top 
:ylindcrs was, however, found to be higher than the 
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Ra 

FIG. 12. Mean Nusselt Number for two rows of in-line 
cylinders, SL/D = ST/D = 4. 
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FIG. 13(a). Isotherms for double rows of cylinders (staggered), Ra = 103, SdD = Sr/D = 4. (b). Streamlines 
for double rows of cylinders (staggered), Ra = 103, SL/D = S~/D = 4, Aft* = --2.91. 
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bottom cylinders. The heat transfer is dependent on 
St./D and S r / D  ratios as well as the Rayleigh number  
considered. Indeed, the trend may reverse for different 
cylinder spacings (in the vertical and horizontal direc- 
tion) as has been observed by Marstcrs [23], who 
studied heat transfer properties of a single vertical 
array of a finite number  of heated cylinders in steady 
state natural  convection. Similar observations were 
also made by Sparrow and Niethammer [-24], who 
studied effects of vertical separation distance on na-  
tural convection for a pair of horizontal cylinders. 

Figures 13(a) and (b) display the isotherms and 
streamlines for the staggered arrangement at Rayleigh 
number  of 103, Both the top and bot tom cylinders are 
again maintained at the same constant temperature 
and the results are shown for the symmetry region as 
depicted in Fig. 3. The StJD and Sr/D ratios were kept 
equal to 4 as was done for the in-line case. The figures 
reveal interesting details of the complex flow situation. 
The top cylinder is not  completely in the wake of the 
bottom cylinder. The plume arising from the bottom 
cylinder is attracted towards the side by the top 
cylinder and the flow attains a wavy pattern. This, in 
turn, causes a reduction of the flow reversal en- 
countered in the in-line case. The heat transfer results 
for the staggered arrangement is given in Fig. 14 where 
the mean Nusselt number  values for the bottom and  
top cylinders are given for the Rayleigh number  range 
of 103-10 s with Su/D = ST/D = 4. The mean Nusselt 
number  of the bot tom cylinders was found to have 
increased, compared to the case of a single row of 
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Top cylinder 
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FIG. 14. Mean Nusselt numbers for two roars of staggered 
cylinders, SulD = Sr/D = 4. 

cylinders reported earlier. The Nusselt number  for the 
top cylinders was, however, found to decrease in this 
case. This is perhaps due to the lesser amount  of flow 
reversal accounted near the outflow regions of the top 
cylinders. A further detailed study is needed to study 
the effects of SL and S r on the Nusselt numbers  and 
flow fields at various Rayleigh numbers  for the in-line 
and staggered arrangements. 

The results presented in this paper indicate that the 
complex natural  convection flow situations arising out 
of closely spaced heated cylinders can be analyzed with 
the numerical technique and the composite grid sys- 
lem used. It was observed that the heat transfer 
characteristics are strongly dependent on the spacings 
of the cylinders as well as the Rayleigh number. A 
detailed numerical study of the problems can be 
carried out to establish the opt imum spacings for 
maximum heat transfer. Experimental investigations 
in this area are also needed to further validate the 
results. Experimental results can, in particular, be used 
to improve the approximate outflow boundary  con- 
ditions and the extent of the flow domain to be 
considered for any future numerical investigations. 
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CONVECTION NATURELLE AUTOUR DE CYLINDRES ItORIZONTAUX DANS DES 
CHAMPS D'ECOULEMENT INTERACTIFS 

Rdsumd--Le transfert thermique par convection naturelle autour de rang6es simples ou doubles de cylindres 
isothermes et dtroitemeut espac6s est dtudid numdriquement zi la fois pour les cas laminaire et turbulent. On 
considr un nombre suffisammant grand de cylindres darts chaque rangde, de telle sorte qu'une maille 
sym6trique peut dtre considdrde dans cette analyse. Le schdma numdrique utilise un reseau cylindrique de 
noeuds au voisinage du cylindre avec une maille cartdsienne couvrant le domaine de recoulement. Le meddle 
k-c de turbulence est appliqud pour obtenir les rr sur lu turbulent. On considEre I'effet de 
I'espacement varid entre cylindres darts la direction horizontale. Les rdsultats sent utilisables directement 
dans le chauffage ~lectrique ou solaire, dans la technologie du stockage, dans la sfiretd des rdacteurs 

nucldaires parmi d'autres cas. 

NAT13RLICttE KONVEKTION AN tiORIZONTALEN ZYLINDERN 1N WECHSELWIRKUNG 
MIT STROMUNGSFELDERN 

Zusammenfassung--Der W~/rmef/bergang durch nat/irliche Konvektion yon Einzel- und Doppelreihen eng 
angeordneter isotherm beheizter Zylinder wird numerisch untersucht und zwar f//r den laminaren und den 
turbulenten Fall. Dabei wird ff/r jede Reihe eine ausreichend grebe Anzahl ','on Zylindern angenommen, 
wodurch bei der Untersuchung eine symmetrische Einheit betrachtet werden kann. Ffir das numerische 
Rechenverfahren wird ein zylindrisches Knoten-Netzwerk in der N~he des Zylinders und ein kartesisches 
Netz im restlichen Str6mungsgebiet benutzt. FOr die Berechnung bei turbulenter Str6mung wird das k-e- 
Tubulenzmodell verwendet. Auch der Einflul3 des Zylinderabstandes in horizontaler Richtung wird 
betrachtet. Die Ergebnisse sind unter anderem bei elektrischen Anordnungen, bei der Solarheizungs- und 
Speicher-Technologie, bei der Reaktor-Sicherheit und der Beseitigung radioaktiver AbfSlle yon direktem 

Nutzen. 

ECTECTBEttttAJ:I KOHBEKIIH,q OT FOPI.13OHTAJIbHblX I_I, t IJI i lH~POB B e  
B3AHMO,/],EflCTBYlOIIItlX I10.rlJ:IX TEqEHI.I$1 

AmtorauH~t--llpoBenetlo ttltC~'letlttoe ucc.le.aoBalllle npouecca Tem'aonepenoca llpil ecrecTBelnto~'l 
KOtlBCKIIIIII OT Ohlloro II 22ByX p.q,aOB II..rlOTIIO pacno;loT~ennblx 113OTCpMHtlCCKtlX HarpesaeMblX 
lllL'llnl,~pOB npil ."laMlnlapnoM II TypGy.qenTnoM O6TCKanHU. n Ka;.r;J20.M p~.ay paccMaTpllsaeTc~ 
.,EloclaTOq|lO 60.qblllOe q|IC.rIO lllt.qUllJIpOB 2L"I~ Tore, tlTO6bl MOTKtlO 6bl.qO Bbl.~e.qllTb CU.MMeTptlqnylo 
aqeiiKy fl.q~ aua.qll3a, qltc~qeutla:~ cxeMa COCTOIIT 113 tllLqutt/lpllqeeKoi] CCTKH y3.qOBblX TOqCK 
B6.qll3n lln,'Iuu21pa II ,aeKapToBoii CCTKII B OCTa.rlbttOi[ O6.'laCTII Teqeltll~l. ,~.rl~ pacqe ra  Typ6yylenTnoro 
"reqelllffl ltCflO.qb3OBaJ'laCb Typ6y.aellTila~t MO,..Re~'lb k - e .  Pacc,Molpcllo TaK~e B.'lll~lltlle U3Melleltll~l 
pacclo~lllll~l Mex<lly llll.Jqlln..qpaMII B i-opn301tTa.ilblrOM ilanpaB~qemlll. Pe3y.J'n::,TaTbl pa6OTbl MOl'y'l" nMeTb 
Henocpe,,lc-l-Betuloe npltMoltetlne B 3.qCKTpOICXUltKe, Textto.'IOFIItt no.qyqelnl~t u ilaKorl.qeml~l co.queqllOl'! 
311epruH, aas o6ecne,~elma 6e3onacnocTH a,aepnblX peaI~TOpOB II y,aa.lemia OTXO,aOB, a TaKme B 

,apyr~lx o6.aac-r~x. 


