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Abstract—Natural convection heat transfer from single and double rows of closely spaced isothermal heated
cylinders was investigated numerically for both laminar and turbulent cases. A sufficiently large number of
cylinders are considered in each row such that a symmetry unit can be considered for the analysis. The
numerical scheme involves the use of a cylindrical network of nodes in the vicinity of the cylinder with a
Cartesian mcsh covering the remainder of the flow domain. The k—¢ turbulence model has been applied to
obtain the results for the turbulent flow predictions. Effects of varying the cylinder spacings in the horizontal
direction are also considered. The results are of direct use in electrical packaging, solar heating and storing

technology, nuclear reactor safety and waste disposal, among others.
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NOMENCLATURE 5 dimensionless velocity component in the y
C,, C,. C,; cmpirical turbulence model direction, pDrv,/p; ‘ _
constants; X, Cartesian coordinate denoting horizontal
specific heat at constant pressure; distance;
cylinder diameter; x*, dimensionless x coordinate, x/D;
gravitational acceleration; ¥ Cartesian coordinate denoting vertical
Grashof number, p2gfD? (T,, — T )i*; distance; '
turbulent kinetic energy, ¥% dimensionless )y coordinate, 3/D;
z, axial coordinate.

Greek symbols

DU y? i thermal coefficient of volume expansion;
2 e )
characteristic length scale of turbulence ; & r(?‘:x;:?::;irg;s_mpa“on rate of turbulent
Zr(z;?(litl m:l;ligt:;;llcp/)-; £, dimensionless volumetric dissipation rate
al coo ; L 3.
dimensionless radial coordinate, r/D; of lurbulent'l\menc energy, D v
Ravleigh ber. Gr Pr ’ ’ 0, circumferential (angle) coordinate;
ayleigh number, &y 15 7y thermal conductivity;
horizontal center-to-center distance for an . I
array of cylinders; H molecular VIISCOS-lty ’
vertical center-to-center distance for an Ho tgrbulep t viscosity; . .
array of cylinders; ur, dimensionless turbulent viscosity, j,/pt;
; X density ;
local temperature;; P ensity; .
. v, kinematic viscosity;
cylinder surface temperature; v stream function:
ambient temperature; % . . ’ . .
dimensionless temperature U, dimensionless stream function, y/ut; .
(T — T )T Tp ) ’ w, vorticity component parallel to cylinder
s S w T f ol axis;
radial velocity component; . L - 2
. R . f w*, rticity, D°w/v.
dimensionless radial velocity component, dimensionless vo y /
pDe, /1,
circumferential velocity component; ) N
dimensionless  circumferential  velocity INTRODUCTIO!

component, pDv/yt;

velocity component in the x direction;
dimensionless velocity component in the x
direction, pDv,/u;

velocity component in the y direction;

ThE sTuDY of forced convection heat transfer in
interacting flow fields (e.g. flows normal to a bank of
tubes) received considerable attention in the past
because of the importance of the flow configuration in
the design of heat exchangers [1-5]. Investigations in
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the area of heat transfer by natural convection from
tube banks or arrays of cylinders, where separate flow
fields induced by individual surfaces interact, have
been. up to now, relatively few. The mathematical
complexities are much more involved than the forced
convection case. The interest in obtaining quantitative
information about natural convection heat transfer in
interacting flow fields has increased considerably in
the last decade. This has been mainly due to advances
in clectrical packaging, solar heating technology,
nuclear reactor safety and the handling of nuclear
wastes. The demands for energy conservation have also
increased the importance for a better understanding of
natural convection in interacting flow-fields.

Eckert and Soehngen [6] used a Zehnder-Mach
interferometer to study natural convection from a
cluster of heated horizontal cylinders placed in an
infinite medium. It was observed that the effect of the
warmer wake around the upper cylinders reduced the
heat transferred since the temperature differential had
decreased. For a staggered arrangement of the cylin-
ders, an induced fluid movement of cooler air resulted
in a greater heat transfer. Leiberman and Gebhart [7]
cxperimentally investigated the interaction between
the natural convective flows of several closely spaced
surfaces by using long, horizontal wires in a parallel
array at several spacings and inclinations. The in-
fluence of tube spacing and array on natural con-
vection heat transfer for horizontal tube bundles has
been determined experimentally by Tillman [8]. Till-
man concluded that tubc spacing has more effect on
the heat transfer than the type of array. Natural
convection from vertical tube bundles to an infinite
atmosphere has been studied experimentally by Davis
and Perona [9].

Recently, Warrington and Crupper [10] have exper-
imentally investigated natural convection heat trans-
fer from a fixed array of four isothermal cylindersin a
cubical enclosure. The cylinders were placed both
vertically and horizontally and it was observed that the
vertical configuration led to decreased heat transfer.

The purpose of this study is to obtain solutions to
the complete Navier-Stokes and energy equations for
steady state 2-dim. laminar and turbulent natural
convection in interacting flow-fields. This refers to a
flow field where the buoyancy-driven flow is caused by
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FiG. 1. Single row of cylinders with the unit of symmetry
indicated.
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more than onc heated body. Specifically, rows of
isothermal horizontal cylinders are considered sub-
merged in an infinite Boussinesq fluid. Previoug
numerical studies of forced convection in tube banks
[4, 5] considered fully developed flows where a “repre.-
sentative element” of the cross-section is considered
remote from the influence of the boundaries. The
governing equations are solved for this element by
considering repetitive boundary conditions at the inlet
and outlet regions. Unfortunately, such an approach is
not applicable to natural conrection in a tube bank
because of the strong coupling between the momen-
tum and encrgy equations and the unknown mass flow
rate through the tube bank. Whereas for forced
convection analysis the mass flow rate is independent
of number of tubes in the bank and their spacings, it is
not the case for natural convection.

SINGLE AND DOUBLE ROWS OF CYLINDERS

To study the interactions between the natural
convective flows of closely spaced bodies, single and
double rows of circular cylinders placed equally apart
are considered. A finite difference numerical scheme
[11], which has recently been applied to natural
convection problems [12-14], is adopted for generat-
ing the 2-dim. steady state results. A symmetry unit is
considered for both the single and double rows of
cylinders as shown in Figs. 1-3. The ratio (/D) of the
center-to-center distance between the cylinders in the
horizontal direction to the cylinder diameter was
varied from 6 to 2 for the case of a single row of
cylinders. For double rows of cylinders the spacings
between the cylinders in the vertical (S7) and horizon-
tal directions (S, ) were kept equal to 4 for the results
presented.

A two equation (k—s) turbulence model was used to
predict the natural convective flow in the interactive
flow-field for Rayleigh numbers above 107. The flow
around a single heated cylinder tends to become
turbulent when the Rayleigh number exceeds the
above value [16). The k -emodel proposed by Launder
and Spalding [15], characterizes turbulence by trans-
port equations for time averaged k, the turbulent
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F1G. 2. Double rows of in-line cylinders with the unit of
symmetry indicated.
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Kinctic encrgy and ¢, its rate of dissipation. Buoyancy
effects on the turbulence structure are also accounted
for. The equations for the time averaged continuity,
momentum and energy are solved simultaneously with
the differential equations for k and & for the turbulent
flow predictions. In order to limit the size of the flow
domain, an S, /D ratio of 2 is used only for generating
.results in the turbulent regime. Turbulent flow pre-
dictions were obtained for the “single row™ case only.

Air properties at atmospheric pressure were used in
the following calculations with Pr =: 0.721. The
applicability of the method used is, however, not
limited to the above geometrical configurations and
the Prandtl number studied.

THE FINITE DIFFERENCE GRID SYSTEM

For the finite difference solution of elliptic equa-
tions, the flow boundaries should be grid lines them-
selves, otherwise either an uneven boundary will result
or special finite difference formulae will be needed at
the boundary. This constraint is more important at a
solid boundary since any mismatch here between the
grid and the boundary could lead to an erroncous flow
pattern. Considering the symmetry units depicted in
Figs. 1-3, it is seen that the main deterrent is the
circular boundary of the cylinders as opposed to the
rectangular boundary of the flow domain.

A composite form of polar and Cartesian system of
grids, recently suggested by Launder and Massey [5],
has been employed in this study. Close to the cylinder,
the steepest gradients of flow properties are in the
radial directions. Thus, a cylindrical polar grid in the
neighbourhood of the cylinder was retained. The r
coordinate is measured from the center of the cylinders
and 0 is measured anti-clockwise from the downward
vertical line as shown in Fig. 1. The remaining flow
region is filled with a Cartesian mesh. For the'double
rows case, two polar grid systems are used in the
vicinity of two cylinders within the symmetry unit. The
cylindrical and Cartesian grids are entirely inde-
pendent of one another. However, the grids overlap
each other and no matching of nodes between neigh-
boring grid rcgions was attempted. A line of “false™
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Fi6. 3. Double rows of staggered cylinders with the unit of
symmetry indicated.
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nodes was defined, for each grid, beyond the in-
tersection line to provide a connection between the
cylindrical and polar regions. Additional details of the
matching region can be found elsewhere [5, 17]. This
system of the composite grid was chosen for the
present problem as it is found to be flexible and
capable of modelling any pitch-to-diameter ratio for
the rows of cylinders considered.

MATHEMATICAL FORMULATION

Using the stream function-vorticity approach, the
steady state 2-dim. laminar natural convection in the
interacting flow-ficld considered is given by the coup-
led elliptic transport equations for ¢/*, w*, and T*.

Various authors have proposed closure models for
turbulent flows in an attempt to accurately predict the
turbulent shear stress. Due to its demonstrated success
in calculating a wide variety of forced flows, the k—¢
model of Launder and Spalding [15] was chosen for
calculating the turbulent natural convection in the
interacting flow-fields. The turbulent viscosity is pro-
portional to a characteristic velocity of turbulence (e.g.
the square root of the turbulent kinetic encrgy) and a
length scale representing the energy-containing eddies.
In the k—¢ model under consideration the length scale
is taken to be the dissipation length scale (¢ ~ k**/I).
Thus, the turbulent viscosity can be written as

y,=C,pke (1

where €, is an empirical constant. In the turbulence
model employed, time averaged values of the tempera-
ture T *, stream function ¢ * and vorticity &* are used.
The mean motion is considered to be 2-dim., but
fluctuating components of velocities in all three dimen-
sions are taken into account. The partial differential
equations for steady (time averaged) turbulent natural
convection flow can be written in cylindrical polar
coordinatc form using the Boussinesq approximation
as follows:

é Cfr* ¢ (1 g B
r* + —{— = —r*o*, 2
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and the stream function and the vorticity are defined as

1éf* oy
= 0 ; vg=-— '’ (7a, 7b)
1] 2o ao*
p¥ = — | — v r
W pr [Er‘ (r* o} 20 ] (8)

The above cquations are used in the vicinity of the
cylinder. This set of equations in the Cartesian coor-
dinates become
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where the stream function and the vorticity are defined
as

L AP

Uy = a)—* N y = = ot (148, l4b)
and
_ on¥ oot
w* = axi - a—y:. (15)

For forced convection flows, turbulence energy is
created by the action of the turbulent contribution to
the shear stresses on the moving fluid. In natural
convection flows, however, a buoyancy induced source
of turbulent kinetic energy is also present. The ex-
pressions (5b) and (12b) represent the energy pro-
duction and/or dissipation terms for the k* equation in
polar and Cartesian coordinates, respectively.

This model contains empirical constants in the
preceding expressions. o, 05, and o, are the turbulent
Prandtl numbers for T*, k*, and &* respectively.
Numerical values for C,, C,, C,, 04, g, and g, are
taken asrecommended by Spalding and Launder [15].
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The constant C; does not exist in forced flows, but its
value can be chosen to be equal to C, implying similar
contribution from buoyant and gradient production
on the scales and intensity of the turbulence. Previous
studies [ 13, 14, 18] have shown that variation of C; has
slight effect on the heat transfer predictions. The
numerical values for the empirical constants used in
this study are given in Table 1.

It should be noted that both the molecular viscosity
and the laminar Prandtl number have been taken into
account in the turbulent form of the equations. Thus,

- the equations are valid throughout the laminar, semi-
laminar and turbulent regions of the flow field [15].

For laminar flow predictions, only equations for y*,
w*, and T* are considered and these are obtained by
setting ;¥ = 0and dropping the over-bars in equations
(2)-(4) for cylindrical coordinates and equations
(9)-(11) for Cartesian coordinates.

BOUNDARY CONDITIONS

The coupled set of elliptic equations (three for the
laminar case and five for the turbulent case) can only
be solved if the conditions are specified along the entire
boundary which encloses the flow field. The cylinders
are considered to be held at a uniform temperature T,,
(T,, > T.) The necessity to limit the size of the
solution domain requires that inflow and outflow
boundaries be defined at finite distances upstream and
downstream from the cylinders.

The boundary sections considered in the solution
domain A-B-C-D (as shown in Figs. 1-3) are handled
as follows:

Symmetry lines

On the left symmetry line A-D, the stream function
is set equal to zero. Vorticity and the gradient of the
temperature normal to the symmetry lines A-D and
B-C are both set to zero. For the case of turbulent flow
predictions, the gradients of k* and ¢* normal to the
symmetry lines are also set to zero.

A major difficulty in the solution of the set of

equations considered is the mass flow rate which isnot

known a priori, both in terms of magnitude and
distribution. Along the symmetry line B-C, the value of
the stream function is uniform, considering no flow
across it. An iterative scheme was used to evaluate the
stream function. For every iteration cycle, the stream
function value along the symmetry line B-Cis set equal
to the average of the stream function values at the
nodes nearest to the symmetry line at the inflow and
outflow sections, calculated from the previous iter-
ation cycle. This way of handling the stream function
boundary condition provided converged solutions.
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Inflow and outflow boundaries (A-B and D-C)

It is assumed that if the inflow and outflow boun-
daries are set sufficiently far away from the cylinders,
then the velocity components in the direction normal
to the symmetry lines are negligible, implying that in
the far field all flow must be in the direction parallel to
the symmetry lines. This is not strictly true for the
outflow section, unless it is considered at a very large
distance from the cylinder center. The approach here is
to somehow neglect the details of flow further down-
stream and obtain realistic answers upstream [19].
The boundary conditions for the inflow and outflow
sections then become

o
ay*

cw* _ ok* _ oe* B
ay* - ay* - ay* -

0. (16)

The temperature of the fluid drawn into the flow field is
the same as the ambient temperature. However, a
generalization along the outflow boundary cannot be
made since the temperature distribution is not known
a priori. It is assumed that the temperature gradient
normal to the outflow boundary is zero.

Cylindrical surfaces

The value of the stream function is uniform arouna
any particular cylinder, corresponding with an im-
permeable wall. Its value is the same as along the
adjacent symmetry plane. The thermal boundary
condition applied in the present calculations is that of
uniform surface temperature around the perimeter of
the cylinder. An expression for vorticity at the cylinder
wallis obtained by expanding the stream function near
the wall as a Taylor series and then using the
continuity and the no-slip condition. Thus, the vor-
ticity at the cylinder wall is given by

2= P

where | * is the stream function value at the confining
wall and ¢ * is the value at a short distance Ar* into the
fluid.

For the turbulent flow predictions, the conditions
for k* and ¢* have to be considered on all boundaries
including the cylindrical surfaces. On the cylindrical
walls, k* is set equal to zero. However, the value of ¢* is
difficult to assign on the walls because ¢ ~ k37/lwith k
and [ being both zero at the wall. This dilemma was
circumvented by using the wall-function expression for
¢* near the wall [20]. The rate of dissipation of kinetic
energy near the walls is fixed by the requirement that

Table 1. Constants used in the turbulence model

C, of c,

Cy o g, oy

0.09 1.44 1.92

144 1.0 1.3 1.0
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the length scale varies linearly with the distance from
the wall. The expression for & is
34 %32

—_ C“ ,\P

; -4 18
r K Ar} (18)

where the subscript p represents the nearest grid point
from the wall, « is the von Karman constant with a
value of 0.42.

Intersections between polar and Cartesian grids

The values of the dependent variables on the “false”
polar and Cartesian nodes are obtained by interpo-
lation from the surrounding four Cartesian and polar
nodes respectively [5]. These values are then used as
the boundary conditions during the next cycle of
iteration. The interpolation assumes a linear variation
of the dependent variables between the grid nodes,
which is a reasonable approximation when the grid
intersections are not within the wall boundary layers.

SOLUTION PROCEDURE

Both for the polar and Cartesian grids, the equa-
tions (2)-(6) and (9)-(13) are transformed into differ-
ence equations by using a finite difference method
presented by Gosman et al. [11]. Instead of using
standard Taylor series expansions, the finite difference
equations are obtained by integration over finite cells.
The method was developed by its originators for
arbitrary orthogonal coordinates, a feature which
makes it particularly attractive in the present case
where different coordinates are used in different re-
gions. A successive substitution technique is employed
to solve the finite difference equations. The finite
difference procedure adopts an “upwind” difference
treatment of the convective terms and the difference
equations are solved by a point iteration method.

The calculations were performed on a Burroughs

W |\

|

p'=+548  y'=+27.4

*
Y =0
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B7700 digital computer. To obtain converged sol-
utions, about 300 iterations were needed for the
laminar cases and about 500 iterations for the turbu-
lent flow predictions. For higher Rayleigh numbers,
the solutions of the previous lower Rayleigh number
case were used as the initial values in the iterative
process (for the same S,/D and S¢/D ratios).

RESULTS AND DISCUSSION

For a single row of heated cylinders, solutions were
obtained both for laminar and turbulent cases. The
Nusselt number in this case becomes a function of
Rayleigh number as well as the S, /D ratio. Predictions
were obtained for the Rayleigh number (based on
cylinder diameter) range of 10°-10° while the ratio
S, /D was varied from 6 to 2. For the case of §; /D = 2,
solutions were obtained over an extended Rayleigh
number range (10°-10°). The predictions for Ra > 107
were obtained using the k—¢ turbulence model dis-
cussed earlier.

The inflow and outflow boundaries were con-
sidered at a distance 4D from the center of the
cylinder (for the “single row” case) for the S, /D ratio of
6. This distance was gradually reduced for decreasing
S./D ratios to reduce computational time. It is noted
here that extending the inflow and outflow boundaries
to very large distances would invalidate the symmetry
boundary conditions used along lines B-C and A-D
(asshown in Figs. 1-3). A polar grid of 15 x 31 (r x 0)
near the cylinder and a Cartesian grid of 25 x 49 (x x
y)for the remaining area (within the symmetry region
shown in Fig. 1) were used for the laminar flow
predictions for the “single row™ case. For turbulent
flow predictions (only for S, /D = 2)a polar grid of 31
x 51 (r x 0)and a Cartesian grid of 25 x 69 (x x y)
were used. The radial node spacing was reduced by a
factor of 2 for the nodes close to the cylinder wall as

v

x *
W =-27.4 W =-54.8

FiG. 4. Streamlines for a single row of cylinders, Ra = 10%, §;/D = 6, Ay* = —3.19,
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FI1G. 5. Isotherms for a single row of cylinders, Ra = 103, S, /D = 6.

compared to the remaining polar region for both the
laminar and the turbulent flow cases. The polar grid
extended up to a distance of 2D from the center for
SyD = 6.

Figure 4 shows the natural convection flow patterns
for asingle row of cylinders at Ra = 10%and S, /D = 6.
The results were obtained only for the symmetry
region A-B-C-D as shown in Fig. 1. Figure 4 was
constructed by joining the solutions of four adjacent
symmeltry units together. An infinite row is considered
and thus end effects were not accounted for. It is
observed that as the plume forms at the wake regions of
the cylinders, a strong flow reversal is encountered due
to the restricted flow region. The isotherms for this
flow situation are shown in Fig. 5. If a finitc number of
cylinders are considered, then much farther down-
stream the plane of the cylinders, the temperature
distribution will no longer resemble plumes arising
from individual sources but from a single source [7]-

Since a 2-dim., stcady-state model is employed, no
oscillations in the plume (if they are present) can be
predicted. The heat transfer results may not be signi-
ficantly affected by this.

The heat transfer characteristics for a single row of
cylinders at varying S, /D ratios are presented in Fig. 6.
The results are shown over the Rayleigh number range
of 10°-10°. The results indicate the strong influence of
the cylinder spacing on the average Nusselt number.
For low Rayleigh numbers the heat transfer is
decreased for close spacings of the cylinders. But as the
Rayleigh number increases the effect diminishes and
can even result in enhanced heat transfer. The op-
timum spacing for maximum heat transfer was found
to be a strong function of the Rayleigh number as is
evident from Fig. 6. In all cases, the mean Nusselt
number will approach the value for a single cylinder in
an unbounded Boussinesq fluid [12] when S, /D is
increased to a large value.

Mean Nusselt number for a

single oylirder li2}

L ’_ﬂ\-’\"\-‘

Ra = 10% —————
Ra = 10°
Ra = 10°
Ra :103
1 1 —. - q
I 5 e f
SL//D

Fi1G. 6. Mean Nusselt number for a single row of cylinders.
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FiG. 7(a). Isotherms for a single row of cylinders, Ra = 10%, §;/D = 2. {b) Streamlines for a single row of
cylinders, Ra = 10°, §,/D = 2, Ay* = —600.
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FiG. 8(a). Isotherms for a single row of cylinders (turbulent flow), Ra = 10%, §,/P = 2. (b). Streambines for
single row of cylinders (turbulent flow), Ra = 10%, S, /D = 2, Ay* = —209.6.
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F1G. 9(a). Constant turbulent kinetic energy lines for a single row of cylinders, Ra = 10%, S, /D = 2.
(b). Constant turbulent viscosity lines for a single row of cylinders, Ra=10%,§,/D = 2.

120} ~— — = Mean Nusselt number for
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100+ cvlinder, Kuean § Goldetein (22) s
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ZOF-

=
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w0° 104 10° 10° w0’ 10° 10
Ra

FiG. 10. Mean Nusselt number as a function of Rayleigh number for a single row of cylinders, S, /D = 2.
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For the particular case of §;/D = 2, results were
obtained beyond the range shown in Fig. 6. Figures
7(a) and 7(b) display the isotherms and flow patterns
for a single row of cylinders where Ra = 10 and S, /D
= 2. The results are shown only for the symmetry
region as given in Fig. 1. The thermal boundary layer
adjacent to the cylinder thins considerably, consistent
with previous observations for a single cylinder [12,
217]. The close spacing of the cylinders, however, affects
the orientation of the flow patterns. It was observed in
the study of the natural convection flow around a
single cylinder, that at high Rayleigh numbers, the
majority of the flow comes from the sides instead of the
bottom [12, 14, 217]. The heat transfer in this case is
found to be enhanced by the spacing of the cylinders.
More detailed study is needed to verify this conclusion.

Turbulent flow predictions were obtained for single
row of cylinders at the S,/D ratio of 2 and for the
Rayleigh number range of 5 x 107 to 10°. Figures 8(a)
and 8(b) show the time-averaged isotherms and
streamlines at Raylcigh number of 10% for the sym-
metry region as shown in Fig. 1. The thermal boundary
is found to be extremely thin which is in agreement
with the results for turbulent natural flow around a
single cylinder [14]. The effects of the neighboring
cylinders are, however, evident from the streamlines.

(a)

B. Farouk and S. I. GUGER!

The constant turbulent kinetic energy lines and the
constant turbulent viscosity (1 = /i) lines are
shown in Figs. 9(a) and 9(b), respectively. The turby.
lent kinetic energy and the turbulent viscosity are
found to be high along the center of the plume ang
close to the cylinder at the wake region. The heat
transfer results for a single row of cylindersat S, /D = 2
are given in Fig. 10 for the Rayleigh number range of
10°-10°. The mean Nusselt numbers for a single
cylinder placed in aninfinite medium are also shown in
the same figure from the correlation given by Kuehn
and Goldstein [22]. The validity of the present numeri-
cal approach has been demonstrated by solving the
well documented ‘single horizontal cylinder’ case, both
for the laminar and turbulent flow regimes [12, 14].
The mean Nusselt numbers from the above studies are
also shown in Fig. 10 for the purpose of comparison. [t
is observed that for the single row of cylinders, the heat
transfer is decreased at low Rayleigh numbers for this
Si/Dratio, but the trend isreversed for higher Rayleigh
numbers. This is probably due to the change in flow
patterns caused by the spacing of the cylinders.
Further work in this area is also needed to validate the
observations.

Numerical solutions for the temperature and vel-
ocity fields werc obtained for the natural convection

F1G. 11(a). Isotherms for double rows of cylinders (in-line), Ra = 10*, 5, /D = S;/D = 4.(b). Streamlines for
double rows of cylinders (in-line), Ra = 103, S,/D = Sy/D = 4, AY* = —4.26.
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fow around double rows of in-line and staggered
:ylinders. The symmetry regions as shown in Figs. 2
ind 3 were considered. For both the in-line and
itaggered arrangements, polar grids (15 x 31) were
1sed near the vicinity of the cylinders and the remain-
ng region was filled with a Cartesian grid (25 x 97)
iystem. A limited study was carried out in this case and
iolutions were obtained only for S; /D = S;/D = 4 for
soth the in-line and staggered arrangements. Only
aminar flow situations were considered. The inflow
ind outflow boundaries were considered at a distance
»f 2D from the nearest ¢ylinder. Figures 11(a)and L1(b)
thow the isotherms and streamlines for natural con-
rection flow in double rows of in-line cylinders at
Rayleigh number of 103. Both cylinders are main-
ained at the same constant temperature. The top
rylinder is subjected to the warm wake of the bottom
sylinder. However, due to the close horizontal spacing
>f the cylinders, a strong flow reversal is observed. The
1cat transfer results for the in-line arrangement are
hown in Fig. 12. Results were obtained for the
Rayleigh number range of 10-10°. The mean Nusselt
wmber for the bottom cylinders was about the same
1s found for the casc of single row of cylinders, for the
ame S, /D ratio. The mean Nusselt number for the top
:ylinders was, however, found to be higher than the
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F1G. 12. Mean Nusselt Number for two rows of in-line

D y*=0

cylinders, S;/D = §;/D = 4.

Je
W' =-267

{b}

FiG. 13(a). Isotherms for double rows of cylinders (staggered), Ra = 103, S, /D = $¢/D = 4.(b). Streamlines
for double rows of cylinders (staggered), Ra = 10%, S,/D = S;/D = 4, Ay* = —291L.
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bottom cylinders. The heat transfer is dependent on
S, /D and S§,/D ratios as well as the Rayleigh number
considered. Indeed, the trend may reverse for different
cylinder spacings (in the vertical and horizontal direc-
tion) as has been observed by Marsters 23], who
studied heat transfer properties of a single vertical
array of a finite number of heated cylinders in steady
state natural convection. Similar obscrvations were
also made by Sparrow and Niethammer [24], who
studied effects of vertical separation distance on na-
tural convection for a pair of horizontal cylinders.
Figures 13(a) and (b) display the isotherms and
streamlines for the staggered arrangement at Rayleigh
number of 10, Both the top and bottom cylinders are
again maintained at the same constant temperature
and the results are shown for the symmetry region as
depicted in Fig. 3. The §; /D and S{/D ratios were kept
equal to 4 as was done for the in-line case. The figures
reveal interesting details of the complex flow situation.
The top cylinder is not completely in the wake of the
bottom cylinder. The plume arising from the bottom
cylinder is attracted towards the side by the top
cylinder and the flow attains a wavy pattern. This, in
turn, causes a reduction of the flow reversal en-
countered in the in-line case. The heat transfer results
for the staggered arrangement is given in Fig. 14 where
the mean Nusselt number values for the bottom and
top cylinders are given for the Rayleigh number range
of 10°-10° with §;/D = S;/D = 4. The mean Nusselt
number of the bottom cylinders was found to have
increased, compared to the case of a single row of

12
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8l

Bottom Cylinder
No

6l Top cylinder
4 -

2 L

0 i i 1 [ 1

10° 10° 10* 108 108
Ra

F1G. 14. Mean Nusselt numbers for two rows of staggered
cylinders, /D = S¢/D = 4.

cylinders reported earlier. The Nusselt number for the
top cylinders was, however, found to decrease in this
case. This is perhaps due to the lesser amount of flow
reversal accounted near the outflow regions of the top
cylinders. A further detailed study is needed to study
the effects of Sy and Sy on the Nusselt numbers and
flow fields at various Rayleigh numbers for the in-line
and staggered arrangements.

The results presented in this paper indicate that the
complex natural convection flow situations arising out
of closely spaced heated cylinders can be analyzed with
the numecrical technique and the composite grid sys-
tem used. It was observed that the heat transfer
characteristics are strongly dependent on the spacings
of the cylinders as well as the Rayleigh number. A
detailed numerical study of the problems can be
carried out to establish the optimum spacings for
maximum heat transfer. Experimental investigations
in this area are also needed to further validate the
results. Experimental results can, in particular, be used
to improve the approximate outflow boundary con-
ditions and the extent of the flow domain to be
considered for any future numerical investigations.
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CONVECTION NATURELLE AUTOUR DE CYLINDRES HORIZONTAUX DANS DES
CHAMPS D’ECOULEMENT INTERACTIFS

Résumé—Le transfert thermique par convection naturelle autour de rangées simples ou doubles de cylindres
isothermes et étroitement espacés est étudié numériquement 4 la fois pour les cas laminaire et turbulent. On
considére un nombre suffisammant grand de cylindres dans chaque rangée, de telle sorte quune maille
symétrique peut étre considérée dans cette analyse. Le schéma numérique utilise un réseau cylindrique de
nocuds au voisinage du cylindre avec une maille cartésienne couvrant le domaine de I'écoulement. Le modéle
k-¢ de turbulence est appliqué pour obtenir les résultats sur I'écoulement turbulent. On considére I'effet de
l'espacement varié entre cylindres dans la direction horizontale. Les résultats sont utilisables directement
dans le chaufTage électrique ou solaire, dans la technologie du stockage, dans la sireté des réacteurs
nucléaires parmi d’autres cas.

NATURLICHE KONVEKTION AN HORIZONTALEN ZYLINDERN IN WECHSELWIRKUNG
MIT STROMUNGSFELDERN

Zusammenfassung—Der Warmetibergang durch natiirliche Konvektion von Einzel- und Doppelreihen eng
angeordneter isotherm beheizter Zylinder wird numerisch untersucht und zwar fiir den laminaren und den
turbulenten Fall. Dabei wird fiir jede Reihe eine ausreichend groBe Anzah! von Zylindern angenommen,
wodurch bei der Untersuchung eine symmetrische Einheit betrachtet werden kann. Fir das numerische
Rechenverfahren wird ein zylindrisches Knoten-Netzwerk in der Nihe des Zylinders und ein kartesisches
Netz im restlichen Strdmungsgebiet benutzt. Fiir die Berechnung bei turbulenter Strémung wird das k-¢-
Tubulenzmodell verwendet. Auch der EinfluBl des Zylinderabstandes in horizontaler Richtung wird
betrachtet. Die Ergebnisse sind unter anderem bei elektrischen Anordnungen, bei der Solarheizungs- und
Speicher-Technologie, bei der Reaktor-Sicherheit und der Beseitigung radioaktiver Abfille von direktem

Nutzen.

ECTECTBEHHASl KOHBEKUMA OT FOPH3OHTAJILHBIX HHIUMHAPOB BO
B3IAMMOJIEACTBYIOIHX MOJAX TEYEHHA

Aunoraura—IlpoBesieHo 4HCICHHOE HCCTENOBAHHE MPOLECCA TEMJIONEPEHOCR NPH  €CTECTBEHHOI
KOHBEKLUHH OT OJHOTO H JBYyX pA0OB IJIOTHO PACHOJIONKEHHBIX H3IOTEPMHYECKHX HArpeBacMblX
WIHHAPOB NMpH NaMHHAPHOM M TypOynenTnom obTekaHuu. B kaimom paly paccMaTpisaercs
n0cTaTOYNO 00:1blIoe YHCAO UHIHHAPOB JUTS TOTO, YTOOB MOXHO OBL1O BBLACIHTH CHMMETPHYHYIO

adyeiiky JUIS aHanaMsa.

YscnenHasg CxemMa COCTOHT M3 uwlmmpuqecxoii CETKH Y3.10BBIX TOUCK

BOIM3N IHIMHAPA M AEKAPTOBOIl CeTKH B OCTanbHOl oBaacTu Tedenns. ina pacsera TypOy/eHTHOro

TedeHHs HCNOIL30BANACL TypOyneHTHas Molelb A—&. PaccMmoTpeno Takke BIHAHHE HIMEHEHMA

PAcCTOANHA MEXAY WIIHHAPAMH B FOPHIOHTANLHOM Hanpaslenuy. Pesyantatsl paboThl MoryT Hmerb

HENOCPEACTBEHHOE NPHMEHCHHE B 3ICKTPOTEXHHKE, TEXHOIOTHM NOIYYeHHS M HAKONICHHA CO.IHEYHON

Jneprun, 18 odecnevenns 6Ge30nacHOCTH SAEPHBIX PE4KTOPOB M YAA1eHHS OTXOIJOB, 3 TAKAE B
ApyrHx 00.1acTaxX.



